metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.8D6, C4⋊Dic3⋊3C2, (C2×C4).27D6, Dic3⋊C4⋊8C2, C6.7(C4○D4), C22⋊C4.2S3, C3⋊2(C42⋊2C2), (C4×Dic3)⋊10C2, C2.9(C4○D12), (C2×C6).20C23, (C2×C12).2C22, C2.7(D4⋊2S3), C6.D4.3C2, (C22×C6).9C22, C22.40(C22×S3), (C2×Dic3).26C22, (C3×C22⋊C4).2C2, SmallGroup(96,86)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.8D6
G = < a,b,c,d,e | a2=b2=c2=1, d6=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d5 >
Subgroups: 122 in 60 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×Dic3, C2×C12, C22×C6, C42⋊2C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C23.8D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, C42⋊2C2, C4○D12, D4⋊2S3, C23.8D6
Character table of C23.8D6
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | complex lifted from C4○D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | complex lifted from C4○D4 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-3 | -√-3 | √3 | -i | -√3 | i | complex lifted from C4○D12 |
ρ20 | 2 | -2 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-3 | √-3 | -√3 | -i | √3 | i | complex lifted from C4○D12 |
ρ21 | 2 | -2 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-3 | √-3 | √3 | i | -√3 | -i | complex lifted from C4○D12 |
ρ22 | 2 | -2 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-3 | -√-3 | -√3 | i | √3 | -i | complex lifted from C4○D12 |
ρ23 | 4 | 4 | -4 | -4 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ24 | 4 | -4 | -4 | 4 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(2 26)(4 28)(6 30)(8 32)(10 34)(12 36)(13 46)(14 20)(15 48)(16 22)(17 38)(18 24)(19 40)(21 42)(23 44)(37 43)(39 45)(41 47)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 37)(23 38)(24 39)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 18 31 39)(2 23 32 44)(3 16 33 37)(4 21 34 42)(5 14 35 47)(6 19 36 40)(7 24 25 45)(8 17 26 38)(9 22 27 43)(10 15 28 48)(11 20 29 41)(12 13 30 46)
G:=sub<Sym(48)| (2,26)(4,28)(6,30)(8,32)(10,34)(12,36)(13,46)(14,20)(15,48)(16,22)(17,38)(18,24)(19,40)(21,42)(23,44)(37,43)(39,45)(41,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,18,31,39)(2,23,32,44)(3,16,33,37)(4,21,34,42)(5,14,35,47)(6,19,36,40)(7,24,25,45)(8,17,26,38)(9,22,27,43)(10,15,28,48)(11,20,29,41)(12,13,30,46)>;
G:=Group( (2,26)(4,28)(6,30)(8,32)(10,34)(12,36)(13,46)(14,20)(15,48)(16,22)(17,38)(18,24)(19,40)(21,42)(23,44)(37,43)(39,45)(41,47), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,18,31,39)(2,23,32,44)(3,16,33,37)(4,21,34,42)(5,14,35,47)(6,19,36,40)(7,24,25,45)(8,17,26,38)(9,22,27,43)(10,15,28,48)(11,20,29,41)(12,13,30,46) );
G=PermutationGroup([[(2,26),(4,28),(6,30),(8,32),(10,34),(12,36),(13,46),(14,20),(15,48),(16,22),(17,38),(18,24),(19,40),(21,42),(23,44),(37,43),(39,45),(41,47)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,37),(23,38),(24,39)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,18,31,39),(2,23,32,44),(3,16,33,37),(4,21,34,42),(5,14,35,47),(6,19,36,40),(7,24,25,45),(8,17,26,38),(9,22,27,43),(10,15,28,48),(11,20,29,41),(12,13,30,46)]])
C23.8D6 is a maximal subgroup of
C24.41D6 C24.42D6 C42.89D6 C42.93D6 C42.94D6 C42.98D6 C42.102D6 C42.104D6 C42.105D6 C42.106D6 C42.229D6 C42.113D6 C42.115D6 C42.118D6 C24.43D6 C24.46D6 C24.47D6 C4⋊C4.178D6 C6.342+ 1+4 C6.702- 1+4 C6.712- 1+4 C6.422+ 1+4 C6.432+ 1+4 C6.1152+ 1+4 C6.482+ 1+4 C6.152- 1+4 C6.202- 1+4 C6.212- 1+4 C6.222- 1+4 C6.232- 1+4 C6.252- 1+4 C4⋊C4.197D6 C6.802- 1+4 C6.812- 1+4 C6.612+ 1+4 C6.622+ 1+4 C6.632+ 1+4 C6.642+ 1+4 C6.652+ 1+4 C6.852- 1+4 C42.137D6 C42.139D6 C42.140D6 C42⋊22D6 C42⋊23D6 C42.234D6 C42.144D6 C42.159D6 C42.160D6 S3×C42⋊2C2 C42⋊26D6 C42.162D6 C42.165D6 C23.8D18 C62.28C23 C62.29C23 C62.31C23 C62.32C23 C62.98C23 C62.223C23 (C2×C12).D10 (C2×C60).C22 (C4×Dic3)⋊D5 (C4×Dic15)⋊C2 C23.13(S3×D5) C23.14(S3×D5) C23.8D30
C23.8D6 is a maximal quotient of
C3⋊(C42⋊5C4) C6.(C4×D4) C2.(C4×D12) Dic3⋊C4⋊C4 (C2×Dic3).9D4 (C2×C4).17D12 (C2×C4).Dic6 (C22×C4).30D6 C24.14D6 C24.15D6 C24.17D6 C24.19D6 C24.20D6 C24.21D6 C23.8D18 C62.28C23 C62.29C23 C62.31C23 C62.32C23 C62.98C23 C62.223C23 (C2×C12).D10 (C2×C60).C22 (C4×Dic3)⋊D5 (C4×Dic15)⋊C2 C23.13(S3×D5) C23.14(S3×D5) C23.8D30
Matrix representation of C23.8D6 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 12 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
6 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 5 | 10 |
0 | 0 | 0 | 8 |
0 | 2 | 0 | 0 |
6 | 0 | 0 | 0 |
0 | 0 | 12 | 11 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,12,0,0,0,0,1,12,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[6,0,0,0,0,2,0,0,0,0,5,0,0,0,10,8],[0,6,0,0,2,0,0,0,0,0,12,0,0,0,11,1] >;
C23.8D6 in GAP, Magma, Sage, TeX
C_2^3._8D_6
% in TeX
G:=Group("C2^3.8D6");
// GroupNames label
G:=SmallGroup(96,86);
// by ID
G=gap.SmallGroup(96,86);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,55,506,188,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^6=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^5>;
// generators/relations
Export